Non-photochemical quenching of chlorophyll fluorescence and its components – recent advances

Research article: Non-photochemical quenching of chlorophyll fluorescence and its components – recent advances

Author: Zulfugarov Ismayil Sohbat

Institute of Molecular Biology & Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan

For correspondence:

Received: May 10, 2022; Received in revised form: May 20, 2022; Accepted: June 06, 2022

Abstract: To protect themselves from fluctuating light environments, plants have evolved non-photochemical quenching (NPQ) as a protective mechanism. NPQ comprises the thermal dissipation of excess light energy via the de-excitation of singlet excited chlorophyll (Chl) in photosystem II of photosynthetic organisms. In this review, all available data on the NPQ and its components have been summarized. NPQ components were primarily distinguished based on the NPQ relaxation and its sensitivity to chemical inhibitors. However, numerous diverse processes contribute to NPQ therefore, it has been suggested to separate NPQ components based on the molecular players involved as well as on Chl fluorescence relaxation kinetics. These types of NPQ include energy-dependent quenching (qE), state transition quenching (qT), photoinhibitory quenching (qI), sustained quenching (qH), zeaxanthin-dependent quenching (qZ), and chloroplast movement-dependent quenching (qM). Although molecular players and regulatory elements that modulate these quenching types are not discussed in this review, they may differ and afford to adapt to the environmental stresses that plants are experiencing. Finally, the role of the investigation of NPQ components, their molecular players, and regulatory mechanisms involved in NPQ as promising targets for strategies to breed highly productive and tolerant crop plants was suggested.

Keywords: Chlorophyll fluorescence, chloroplast movement-dependent quenching, energy-dependent quenching, non-photochemical quenching, plant, state transition quenching, photoinhibitory quenching, sustained quenching, zeaxanthin-dependent quenching


Amstutz C.L., Fristedt R., Schultink A., Merchant S.S., Niyogi K.K., Malnoë A. (20200 An atypical short-chain dehydrogenase reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nat. Plants, 6: 154–166. 

Bellaflore S., Barneche F., Peltler G., Rochalx J.D. (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature, 433: 892–895; doi:10.1038/nature03286. 

Betterle N., Ballottari M., Hienerwadel R., Dall’Osto L., Bassi R. (2010) Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch. Biochem. Biophys., 504: 67–77. 

Blankenship R.E. (2002) Molecular mechanisms of photosynthesis. UK: Blackwell Science Ltd., Oxford, 336 p. 

Briantais J.-M., Vernotte C., Picaud M., Krause G.H. (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim. Biophys. Acta, Bioenerg., 548: 128-138 doi: 10.1016/0005-2728(79)90193-2. 

Brooks M.D., Sylak-Glassman E.J., Fleming G.R., Niyogi K.K. (2013) A thioredoxin-like/-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc. Natl. Acad. Sci. USA, 110: E2733–E2740. 

Cazzaniga S., Dall’Osto L., Kong S.G., Wada M., Bassi R. (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J., 76: 568–579; doi:10.1111/tpj.12314. 

Clayton R.K. (1980) Photosynthesis: Physical mechanisms and chemical patterns. Cambridge: Cambridge University Press, 296 p. 

Dall’Osto L., Caffarri S., Bassi R. (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant. Cell, 17: 1217-1232. 

Dall’Osto L., Cazzaniga S., Wada M., Bassi R. (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Philos. Trans. R. Soc. Lond. B Biol. Sci., 369: 2013022. 

Demmig-Adams B., Garab G., Adams W. W., Govindjee. (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. The Netherlands, Dordrecht: Springer, 649 p. 

Demmig-Adams B., Adams W.W. (1992) Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 43: 599–626. 

Derks A., Schaven K., Bruce D. (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim. Biophys. Acta, 1847: 468-485. 10.1016/j.bbabio.2015.02.008. 

Goss R., Lepetit B. (2015) Biodiversity of NPQ. J. Plant Physiol., 172: 13–32 doi: 10.1016/j.jplph.2014.03.004. 

Jahns P., Holzwarth A.R. (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta, 1817: 182–193. 

Jeong M.S., Hwang E.Y., Jin G.-E., Park S.Y., Zulfugarov I.S., Moon Y.-H., Lee C.-H., Jang S.B. (2010) Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana. Bull. Korean Chem. Soc., 31: 1479-1484. 

Johnson M.P., Ruban A.V. (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. The Plant Journal, 61(2): 283-289. 

Johnson M.P., Ruban A.V. (2011) Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. Journal of Biological Chemistry, 286(22): 19973-19981. 

Johnson M.P., Zia A., Ruban A.V. (2012) Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta, 235(1): 193-204. 

Kasahara M., Kagawa T., Olkawa K., Suetsugu N., Miyao M., Wada M. (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature, 420: 829–832, doi:10.1038/nature01213. 

Krause G.H. (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant., 74: 566-574. 

Krause G.H., Weis E. (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Biology, 42(1): 313-349. 

Krause G.H., Weis E. (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 42: 313–349. 

Krishnan-Schmieden M., Konold P. E., Kennis, J., Pandit A. (2021) The molecular pH-response mechanism of the plant light-stress sensor PsbS. Nature communications, 12(1), 1-11. 

Kromdijk J., Glowacka K., Leonelli L., Gabilly S.T., Iwai M., Niyogi K.K., Long S.P. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354: 857-861. 

Li X.-P., Gilmore A.M., Caffarri S., Bassi R., Golan T., Kramer D., Niyogi K.K. (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. Journal of Biological Chemistry, 279(22): 22866-22874. 

Liguori N., Campos S. R., Baptista A. M., Croce R. (2019) Molecular anatomy of plant photoprotective switches: the sensitivity of PsbS to the environment, residue by residue. The Journal of Physical Chemistry Letters, 10(8): 1737-1742. 

Malnoë A. (2018) Photoinhibition or photoprotection of photosynthesis, which one is it? Update on newly termed sustained quenching component, qH. Environ. Exp. Bot., 154: 123–133. 

Malnoë A., Schultink A., Shahrasbi S., Rumeau D., Havaux M., Niyogi K.K. (2017) The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. Plant. Cell, 30: 196–208. 

Murchie E.H., Niyogi K.K. (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol., 155: 86–92, doi:10.1104/pp.110.168831. 

Müller P., Li X.-P., Niyogi K.K. (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol., 125: 1558–1566. 

Nilkens M., Kress E., Lambrev P., Miloslavina Y., Müller M., Holzwarth A.R., Jahns P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta, 1797: 466–475. 

Niyogi K.K., Truong T.B. (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol., 16: 307-314 doi: 10.1016/j.pbi.2013.03.011. 

Pashayeva A., Wu G., Huseynova I., Lee C. H., Zulfugarov I.S. (2021) Role of thylakoid protein phosphorylation in energy-dependent quenching of chlorophyll fluorescence in rice Plants. International Journal of Molecular Sciences, 22(15): 7978. 

Rees D., Noctor G., Ruban A.V., Crofts J., Young A., Horton P. (1992) pH dependent chlorophyll fluorescence quenching in spinach thylakoids from light treated or dark adapted leaves. Photosynthesis Research, 31(1): 11-19. 

Ruban A.V. (2012) The photosynthetic membrane. UK Chichester: John Wiley & Sons, Ltd., doi: 10.1002/9781118447628 

Ruban A.V. (2016) Non-photochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protection against photodamage. Plant Physiol., 170: 1903–1916. 

Ruban A.V., Johnson M.P., Duffy C.D.P. (2012) Photoprotective molecular switch in photosystem II. Biochim. Biophys. Acta, 1817: 167–18; doi: 10.1016/j.bbabio.2011.04.007. 

Ruban A.V., Horton P. (1995) An investigation of the sustained component of nonphotochemical quenching of chlorophyll fluorescence in isolated chloroplasts and leaves of spinach. Plant. Physiol., 108: 721–726. 

Ruban A.V., Johnson M.P. (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth. Res., 99: 173–183. 

Saccon F., Giovagnetti V., Shukla M. K., Ruban A.V. (2020) Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. J. Exp. Bot., 71(12): 3626-3637. 

Sello S., Meneghesso A., Alboresi A., Baldan B., Morosinotto T. (2019) Plant biodiversity and regulation of photosynthesis in the natural environment. Planta, 249(4): 1217-1228. 

Walters R.G., Horton P. (1991) Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth. Res., 27: 121-133. 

Wilson S., Ruban A.V. (2020) Rethinking the influence of chloroplast movements on non-photochemical quenching and photoprotection. Plant. Physiol., 183: 1213–1223. 

Wraight C.A., Crofts A.R. (1970) Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. Eur. J. Biochem., 17: 319–327; doi: 10.1111/j.1432-1033.1970.tb01169.x. 

Zulfugarov I.S., Ham O.K., Mishra S.R., Kim J.Y., Nath K., Koo H. Y., Kim H.-S., Moon Y.-H., An G., Lee, C.-H. (2007) Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6): 773-780. 

Zulfugarov I.S., Tovuu A., Dogsom B., Lee C.Y., Lee C.-H. (2010) PsbS-specific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants. Photochem. Photobiol. Sci., 9: 697–703, doi: 10.1039/b9pp00132h. 

Zulfugarov I.S., Tovuu A., Eu Y.J., Dogsom B., Poudyal R.S., Nath K., Hall M., Banerjee M., Yoon U.C., Moon Y.H., An G., Jansson S., Lee C.-H. (2014) Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biology, 14(1): 1-15. 

Zulfugarov I.S., Wu G., Tovuu A., Lee C.-H. (2019) Effect of oxygen on the non-photochemical quenching of vascular plants and potential oxygen deficiency in the stroma of PsbS-knock-out rice. Plant Science, 286: 1-6.

Добавить комментарий

Оставить комментарий

reload, if the code cannot be seen