Overview on under development of vaccine candidates against SARS-CoV-2

Research article: Overview on under development of vaccine candidates against SARS-CoV-2

Authors: A.M. Allahverdiyev 1*, S. Dinparvar 2, M. Bagirova 1, A.I. Qurbanov 1, R.B. Bayramlı 3*

1Medical Prophylactic Research Institute named after V.Y.Akhundov, 37 J.Jabbarli Str., Baku AZ1065, Azerbaijan

2 Department of Bioengineering, Yildiz Technical University, Davutpasa Cad. No. 127, 34210 Esenler, Is- tanbul, Turkey

3 Department Medical Microbiology and Immunology, Azerbaijan Medical University, 23 Bakikhanov Str., Baku AZ1022, Azerbaijan

*For correspondence: adilmoglu@gmail.com; saharr19933@gmail.com; mbagir@gmail.com; akifgurbanov@mail.ru; rbayramli@tabib.gov.az

http://dx.doi.org/10.29228/proc.77

Received 15 October 2020; Received in revised form 10 November 2020; Accepted 10 November 2020

Abstract: 

Severe acute respiratory syndrome SARS -CoV-2 is a newly emerging infectious disease caused by a novel coronavirus, SARS-CoV. The World Health Organization announced the outbreak of corona- virus disease (COVID-19) pandemic on 11 March 2020. SARS-CoV-2 and the Middle Eastern res- piratory syndrome-related coronavirus (MERS-CoV) constitute the most life-threatening species among all human coronaviruses. Until now, not any vaccines have been developed against corona- viruses. Therefore, it is essential to develop vaccines to prevent outbreaks of COVID-19. Live atten- uated, inactivated, subunit, recombinant protein, epitope, DNA, RNA based vaccines, adenovirus- based vectors, virus-like particle vaccine forms the bases of vaccine candidates against COVID-19. Each current vaccine strategy has distinct advantages and disadvantages. Therefore, it is paramount that multiple strategies be advanced quickly and then evaluated for safety and efficacy. According to the World Health Organization report, 42 COVID-19 vaccine projects are in clinical evaluation. Vac- cine candidates developed against COVID-19 are different from the vaccine candidates previously developed against SARS-CoV, MERS-CoV, and have a wider platform and are new hopes to develop a vaccine against COVID-19.

Keywords: SARS-CoV-2, COVID-19, vaccines

References  

Bhattacharya M., Sharma A.R., Patra P., Ghosh P., Sharma G., Patra B.C., Lee S.S., Chakraborty C. (2020) Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics ap-proach. Journal of Medical Virology, 92: 618-631. https://doi.org/10.1002/jmv.25736. 

Charlton Hume H.K., Vidigal J., Carrondo M.J.T., Middelberg A.P.J., Roldão A., Lua L.H.L. (2019) Synthetic biology for bioengineer-ing virus-like particle vaccines. Biotechnology and Bioengineering, 116(4): 919-935. https://doi.org/10.1002/bit.26890. 

Chen W.H., Strych U., Hotez P.J., Bottazzi M.E. (2020) The SARS-CoV-2 Vaccine pipeline: an over-view. Current Tropical Medicine Reports. 7: 61-66. https://doi.org/10.1007/s40475-020-00201-6. 

Chua B.Y., Sekiya T., Jackson D.C. (2018) Opin-ion: Making inactivated and subunit-based vaccines work. Viral Immunology, 31(2): 150-158. https://doi.org/10.1089/vim.2017.0146. 

Dhakal S., Renukaradhya G.J. (2019) Nanoparti-cle-based vaccine development and evaluation against viral infections in pigs. Veterinary Re-search, 50: Article No 90. https://doi.org/10.1186/s13567-019-0712-5. 

Gao Q., Bao L., Mao H., Wang L., Xu K., Yang M., Li Y., Zhu L., Wang N., Lv Z., Gao H., Ge X., Kan B., Hu Y., Liu J., Cai F., Jiang D., Yin Y., Qin C., … Qin C. (2020) Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 369(6499): 77-81. doi: 10.1126/sci-ence.abc1932. 

Gurunathan S., Klinman D.M., Seder R.A. (2000) DNA vaccines: Immunology, application, and opti-mization. Ann. Rev.of Immunol., 18: 927-974. doi: 10.1146/annurev.immunol.18.1.927. 

Kalita P., Padhi A.K., Zhang K.Y.J., Tripathi T. (2020) Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microbial 

Pathogenesis. 145: Article ID 104236. https://doi.org/10.1016/j.micpath.2020.104236. 

Li E., Chi H., Huang P., Yan F., Zhang Y., Liu C., Wang Z., Li G., Zhang S., Mo R., Jin H., Wang H., Feng N., Wang J., Bi Y., Wang T., Sun W., Gao Y., Zhao Y., … Xia X. (2019) A novel bacterium-like particle vaccine displaying the MERS-CoV receptor-binding domain in-duces specific mucosal and systemic immune re-sponses in mice. Viruses. 11(9): 1-16. https://doi.org/10.3390/v11090799. 

Malik Y.S., Sircar S., Bhat S., Sharun K., Dhama K., Dadar M., Tiwari R., Chaicumpa W. (2020) Emerging novel coronavirus (2019-nCoV) - current scenario, evolutionary perspec-tive based on genome analysis and recent devel-opments. Veterinary Quarterly. 40(1): 68-76. https://doi.org/10.1080/01652176.2020.1727993. 

Minor P.D. (2015) Live attenuated vaccines: Histor-ical successes and current challenges. Virology. 479-480: 379-392. https://doi.org/10.1016/j.vi-rol.2015.03.032. 

Modjarrad K., Roberts C.C., Mills K.T., Castel-lano A.R., Paolino K., Muthumani K., Reuschel E.L., Robb M.L., Racine T., Oh M. don, La-marre C., Zaidi F.I., Boyer J., Kudchodkar S. B., Jeong M., Darden J.M., Park Y.K., Scott P.T., Remigio C., … Maslow J.N. (2019). Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. The Lancet Infectious Diseases, 19(8): 1013-1022. https://doi.org/10.1016/S1473-3099(19)30266-X 

Nganou-Makamdop K., Van Roosmalen M.L., Audouy S.Al, Van Gemert G.J., Leenhouts K., Hermsen C.C., Sauerwein R.W. (2012) Bacte-rium-like particles as multi-epitope delivery plat-form for Plasmodium berghei circumsporozoite protein induce complete protection against malaria in mice. Malaria Journal, 11: Article No 50, 11 p. https://doi.org/10.1186/1475-2875-11-50 

Palatnik-de-Sousa C.B., Soares I.da S., Rosa D.S. (2018) Editorial: Epitope discovery and syn-thetic vaccine design. Frontiers in Immunology, 9: Article 826, 3 p. https://doi.org/10.3389/fimmu.2018.00826 

Pardi N., Hogan M.J., Pelc R.S., Muramatsu H., Andersen H., DeMaso C.R., Dowd K.A., Suther-land L.L., Scearce R.M., Parks R., Wagner W., Granados A., Greenhouse J., Walker M., Willis E., Yu J.S., McGee C.E., Sempowski G.D., Mui B.L., … Weissman D. (2017) Zika virus protection by a single low-dose nucleoside-mod-ified mRNA vaccination. Nature, 543: 248-251. https://doi.org/10.1038/nature21428 

Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., Dhama K., Yatoo M.I., Bonilla-Aldana D.K., Rodriguez-Morales A.J. (2020) SARS-CoV-2, SARS-CoV, and MERS-CoV: A comparative overview. Infezioni in Medic-ina, 28(2): 174-184. PMID: 32275259 

Rohaim M.A., Munir M. (2020) A scalable topical vectored vaccine candidate against SARS-CoV-2. Vaccines, 8(3): Article ID 472, 16 p. https://doi.org/10.3390/vaccines8030472. 

Saluja V., Hinrichs W.L.J., Frijlink H.W. (2010) Dried influenza vaccines: Over the counter vac-cines. Human Vaccines, 6(10): 854-856. https://doi.org/10.4161/hv.6.10.12572. 

Sekimukai H., Iwata-Yoshikawa N., Fukushi S., Tani H., Kataoka M., Suzuki T., Hasegawa H., Niikura K., Arai K., Nagata N. (2019) Gold na-noparticle‐adjuvanted S protein induces a strong antigen‐specific IgG response against severe acute respiratory syndrome‐related coronavirus infec-tion, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol-ogy and Immunology, 64: 33-51. doiI: 10.1111/1348-0421.12754 

Tahir Ul Qamar M., Saleem S., Ashfaq U.A., Bari A., Anwar F., Alqahtani S. (2019) Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coro-navirus: An immune-informatics study. Journal of Translational Medicine, 17: 362. https://doi.org/10.1186/s12967-019-2116-8. 

Takasuka N., Fujii H., Takahashi Y., Kasai M., Morikawa S., Itamura S., Ishii K., Sakaguchi M., Ohnishi K., Ohshima M., Hashimoto S.I., Odagiri T., Tashiro M., Yoshikura H., Take-mori T., Tsunetsugu-Yokota Y. (2004) A subcu-taneously injected UV-inactivated SARS corona-virus vaccine elicits systemic humoral immunity in mice. International Immunology. 16(10): 1423-1430. https://doi.org/10.1093/ intimm/dxh143. 

Van Braeckel-Budimir N.V., Haijema B.J., Leen-houts K. (2013) Bacterium-like particles for effi-cient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Frontiers in Immunology, 4: Article No 282, 14 p. https://doi.org/10.3389/fimmu.2013.00282. 

Wang F., Kream R.M., Stefano G.B. (2020) An evidence based perspective on mRNA-SARS cov-2 vaccine development. Medical Science Monitor, 26: e924700 https://doi.org/10.12659/ MSM.924700. 

Wang Y., Wang L., Cao H., Liu C. (2020) SARS-CoV-2 S1 is superior to the RBD as a COVID-19 subunit vaccine antigen. J. of Medical Virology, 2020: 1-7. https://doi.org/10.1002/jmv.26320 

Yang Z.Y., Kong W.P., Huang Y., Roberts A., Murphy B.R., Subbarao K., Nabel G.J. (2004) A DNA vaccine induces SARS coronavirus neutrali-zation and protective immunity in mice. Nature, 428: 561-564. https://doi.org/10.1038/ nature02463 

Zhang N., Channappanavar R., Ma C., Wang L., Tang J., Garron T., Tao X., Tasneem S., Lu L., Tseng C.T.K., Zhou Y., Perlman S., Jiang S., Du L. (2016) Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome corona-virus. Cellular and Molecular Immunology, 13: 180-190. https://doi.org/10.1038/cmi.2015.03. 

Zhu F.C., Li Y.H., Guan X.H., Hou L.H., Wang W.J., Li J.X., Wu S.P., Wang B.S., Wang Z., Wang L., Jia S.Y., Jiang H.D., Wang L., Jiang T., Hu Y., Gou J.B., Xu S.B., Xu J.J., Wang X. W., … Chen W. (2020). Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet, 395(10240): 1845-1854. https://doi.org/10.1016/S0140-6736(20)31208-3.


Добавить комментарий

Оставить комментарий

reload, if the code cannot be seen