Co-infections in COVID-19 patients and the importance of microbial diagnosis for disease management
Research article: Co-infections in COVID-19 patients and the importance of microbial diagnosis for disease management
Authors: R. Khalilov1,2,3, A. Eftekhari 2,4, H. Hosainzadegan2,4*
1 Department of Biophysics and Biochemistry, Baku State University, 23 academician Z.Khalilov Str., Baku AZ1148, Azerbaijan
2Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine & Baku, Azerbaijan
3Institute of Radiation Problems, Azerbaijan National Academy of Sciences, 9 B.Vahabzadeh Str., Baku AZ1143, Azerbaijan
4Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
* For correspondence: hasanhosainy122@yahoo.com
Received 12 October 2020; Received in revised form 25 November 2020; Accepted 26 November 2020
Abstract:
Patients infected with respiratory viral infections especially new coronavirus disease (COVID-19) are most susceptible to co-infections which in turn, increases the severity of disease and mortalities. Therefore, antibiotic agents should be applied for the treatment of bacterial co-infection and super- infections. On the other side, all guidelines for COVID-19 clearly mention that improper use of anti- biotics, especially the combination of broad-spectrum antibiotic agents, should be avoided. Because the use of broad-spectrum antibiotics for a long time and in the combination of several other agents not only shows no effect on the recovery of the disease but also may lead to potentially fatal secondary superinfections and induce resistance in the normal bacterial population. Currently, due to the una- voidable use of antibiotics among patients with COVID-19 who are admitted to intensive care units, cultivation-based methods for isolating and detecting bacteria are less sensitive in the management of the disease. Hence, the use of culture-independent methods that can detect a wide range of potential pathogens and antimicrobial resistance is important, especially for screening and treatment follow- ups. So, culture-independent techniques such as whole-genome metagenomics can be used to identify monomicrobial or mixed infections without selecting the previous target. Whole-genome meta- genomics can provide valuable and useful information about pathogens that cause co-infections and antimicrobial resistance in hospital settings, especially in the intensive care units. Therefore, these studies can have a valuable aid in the management of antibiotic administration and subsequent tar- geted treatment of infections.
Keywords: COVID-19, bacterial infection, antimicrobial, whole-genome metagenomics
References
Arabi Y.M., Deeb A.M., Al-Hameed F. Man-dourah Y., Almekhlafi G.A., Sindi A.A., Al-Omari A., Shalhoub S., Mady A., Alraddadi B., Almotairi Abdullah., Khatib K.A., Abdul-momen A., Qushmaq I., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Al Harthy A., Kharaba A., Jose J., Dabbagh T., Fowler R.A., Balkhy H.H., Merson L., Hayden F.G. (2019) Saudi Critical Care Trials Group. Macrolides in critically ill patients with Middle East respiratory syndrome. InternationalJournal of Infectious Disease, 81: 184-190.
Ardron M.J., Westengard J.C., Dutcher T.F. (1994) Band neutrophil counts are unnecessary for the diagnosis of infection in patients with nor-mal total leukocyte counts. American Journal ofClinical Pathology, 102(5): 646-649.
Arentz M., Yim E., Klaff L. Lokhandwala S., Riedo F., Chong M., Lee M. (2020) Character-istics and outcomes of 21 critically Ill patients with COVID-19 in Washington State. JAMA, 323: 1612-1614. doi: 10.1001/jama.2020.4326
Bachmann N.L., Rockett R.J., Timms V.J., Sintchenko V. (2018) Advances in clinical sample preparation for identification and characterization of bacterial pathogens using metagenomics. Fron-tiers in Public Health, 6: 363.
Bates D.W., Lee T.H. (1992) Rapid classification of positive blood cultures. Prospective validation of a multivariate algorithm. JAMA, 267: 1962-1966.
Bonadio W.A., Smith D., Carmody J. (1992) Correlating CBC profile and infectious outcome. A study of febrile infants evaluated for sepsis. Clinical Pediatrice (Phila), 31(10): 578-582.
Cao J., Tu W.J., Cheng W., Yu L., Liu Y., Hu X., Liu Q. (2020) Clinical features and short-term outcomes of 102 patients with corona virus disease 2019 in Wuhan, China. Clinical Infec-tious Disease, 71(15): 748-755 doi:10.1093/cid4- /ciaa243
Chen L., Liu H.G., Liu W., Liu J., Liu K., Shang J., Deng Y., Wei S. (2020) Analysis of clinical features of 29 patients with 2019 novel corona-virus pneumonia. Zhonghua Jie He He Hu Xi ZaZhi., 43: E005.
Chen N., Zhou M., Dong X. Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia
J., Yu T., Zhang X., Zhang L. (2020) Epide-miological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223): 507-513.
Chih-Cheng L., Cheng Y., Po R. (2020) Co-in-fections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? Journal of Microbiology,Immunology and Infection, 53(4): 505-512.
Cornbleet P.J. (2002) Clinical utility of the band count. Clinical Laboratory Medicine, 22(1): 101-36.
De Jong E., van Oers J.A., Beishuizen A. Vos P., Vermeijden W.J., Haas L.E., Loef B. G., Dor-mans T. (2016) Efficacy and safety of procalci-tonin guidance in reducing the duration of antibi-otic treatment in critically ill patients: a random-ised, controlled, open-label trial. Lancet Infec-tious Disease, 16: 819–827.
Dekker J.P. (2018) Metagenomics for clinical in-fectious disease diagnostics steps closer to reality. Journal of Clinical Microbiology, 56: e00850-18. https://doi.org/10.1128/JCM. 00850-18.
Emmanuel D., François C., Benjamin D. Adrien H. , Maxime C., Quentin R., Benoit P., Béa-trice B., François D. (2020) Bacterial Pneumo-nia in COVID-19 Critically Ill Patients: A Case Series. Clinical Infectious Diseases, ciaa762; https://doi.org/10.1093/cid/ciaa762
Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V. E., Dupont H.T., Honoré S., Colson P., Chabrière E., La Scola B., Rolain J., Brouqui P., Raoult D. (2020) Journal pre-proof hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label nonrandomized clinical trial. International Journal of AntimicrobialAgents, 56(1): 105949. doi: 10.1016/j. ijantimi-cag.2020.105949
Goyal P., Choi J.J., Pinheiro L.C., Schenck E.J., Ruijun C., Jabri A., Satlin M.J., Campion T.R., Nahid M., Ringel J.B., Hoff-man K.L., Alshak M.N., Li H.A., Wehmeyer G.T., Rajan M., Reshetnyak E., Hupert N., Horn E.M., Martinez F.J., Gulick R.M., Saf-ford M.M. (2020) Clinical characteristics of Covid-19 in New York city. New England Jour-nal of Medicine, 382: 2372-2374; doi:10.1056/NEJMc2010419..
Guan W., Ni Z., Hu Y., Liang W., Ou C., He J., Liu L., Shan H., Lei C., Hui D., Du B., Li L. (2020) Clinical characteristics of coronavirus dis-ease 2019 in China. New England Journal ofMedicine, 382: 1708-1720. doi:10.1056/NEJMoa2002032.
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395: 497-506.
Kim D., Quinn J., Pinsky B., Shah N.H., Brown I. (2020) Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA, 323(20): 2085–2086; doi:10.1001/ jama.2020.6266
Kuppermann N., Walton E.A. (1999) Immature neutrophils in the blood smears of young febrile children. Archives of Pediatrice Adolescnce Med-icine, 153(3): 261-266.
Liang E.W., Kwan K.K.K., Wan Q.H., Grace T.C.K., Thuan T.T., Limin W. (2020) Commu-nity-acquired viral respiratory infections amongst hospitalized inpatients during a COVID-19 out-break in Singapore: co-infection and clinical out-comes. Journal of Clinical Virology, 128: 104436.
Mac Intyre C.R., Chughtai A.A., Barnes M., Ridda I., Seale H., Toms R., Heywood A.(2018) The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC In-fect. Dis., 18: 637.
Meier M.A., Branche A., Neeser O.L., Wirz Y., Haubitz S., Bouadma L., Wolff M., Luyt C.E., Chastre J., Tubach F., Christ-Crain M., Corti C., Jensen J.U., Deliberato R.O., Kris-toffersen K.B., Damas P., Nobre V., Oliveira C.F., Shehabi Y., Stol D. (2019) Procalcitonin-guided antibiotic treatment in patients with posi-tive blood cultures: a patient-level meta-analysis of randomized trials. Clinical Infectious Disease. 69: 388–396.
Cox M.J., Loman N., Bogaert D., O'Grady J.(2020) Co-infections: potentially lethal and unex-plored in COVID-19. The lancet Microbe, 1(1):
Paliogiannis P., Zinellu A. (2020) Bilirubin levels in patients with mild and severe Covid-19: a pooled analysis. Liver International, 40(7): 1787-1788.
Pallen M.J. (2014) Diagnostic metagenomics: po-tential applications to bacterial, viral and para-sitic infections. Parasitology, 141: 1856–1862.
Phelan A.L., Katz R., Gostin L.O. (2020) The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA, 323: 709-710.
Timothy M.R., Luke S.P.M., Nina Z.,Nishanthy R., Keira S., Mark G., Giovanni S., Graham C., Alison H. (2020) Bacterial and fungal coin-fection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial pre-scribing. Clinical Infectious Diseases, ciaa530; https://doi.org/10 .1093/cid/ciaa530
Touzard-Romo F., Tapé C., Lonks J.R. (2013) Co-infection with SARS-CoV-2 and human met-apneumovirus. R. I. Med. J., 103(2): 75-76.
Wang Z., Yang B., Li Q., Wen L., Zhang R. (2020) Clinical features of 69 cases with corona-virus disease 2019 in Wuhan, China. Clinical In-fectious Disease, ciaa272; doi: 10.1093/ cid/ciaa272
Wu C., Chen X., Cai Y. Xia J., Zhou X., Xu S., Hanping H., Zhang L., Zhou X. et al. (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med., 180(7): 934–943. doi: 10.1001/jamainternmed.2020.0994.
Xiaojuan Z., Ge Y., Tao W., Kangchen Z., Yin C., Bin W., Fengcai Z., Baoli Z., Lunbiao C. (2020) Co-infection with respiratory pathogens among COVID-2019 cases. Virus Research, 285: 198005
Zhou F., Yu T., Du R., Fan G., Liu Y. , Liu Z., Xiang J., Wang Y., Song B., Gu X ., Guan L., Wei Y., Li H., Wu X ., Xu J., Tu S., Zhang Y., Chen H., Cao B. (2020) Articles Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 6736: 1-9.
Yap F.H., Gomersall C.D., Fung K.S., Ho P., HoO., Lam P., Lam D., Lyon D., Joynt G. (2004) Increase in methicillin-resistant Staphylococcusaureus acquisition rate and change in pathogen pattern associated with an outbreak of severe acute respiratory syndrome. Clinical InfectiousDisease, 39: 511–516
Yu N., Li W., Kang Q., Xiong Z., Wang S., Lin X., Liu Y., Xiao J., Liu H., Deng D., Chen S., Zeng W., Feng L., Wu J. (2020) Clinical fea-tures and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single centre, descriptive study. Lancet Infectious Disease, 20: 559–564. doi: 10.1016/S1473-3099(20)30176-6.
Zarkesh M., Sedaghat F., Heidarzadeh A., Ta-brizi M, Moghadam K., Ghesmati S. (2015)Diagnostic value of IL-6, CRP, WBC, and abso-lute neutrophil count to predict serious bacterial infection in febrile infants. Acta Medica Iran-ica, 53(7): 408-411.
Zhihua L., Shaohua C., Juan L. Jingtao H., Lina F., Binghong Z., Yan L. (2020) Clinical charac-teristics and co-infections of 354 hospitalized pa-tientswith COVID-19 in Wuhan, China: a retro-spective cohort study. Microbes and Infection, 22: 195e199196
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J.,Tu S., Zhang Y., Chen H., Cao B. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lan-cet, 395: 1054-1062.