Chlorophyll fluorescence and "Maximum Quantum Efficiency" of photosystem II in plant sciences

Research article: Chlorophyll fluorescence and "Maximum Quantum Efficiency" of photosystem II in plant sciences

Author: Y.M. Feyziyev*

Institute of Molecular Biology & Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku AZ 1073, Azerbaijan; *For correspondence: y.feyziyev@imbb.science.az

Accepted for publication: 20 November 2019

Abstract: 

The fluorescence of chlorophyll a is widely used as an indicator of the state of photosystem II (PSII) in plants, algae and cyanobacteria. There were reports on ~ 20 various parameters of fluorescence of PSII chlorophyll. Three of these characteristics, the initial (F0), maximum (FM) and variable (FV) fluorescence of chlorophyll, and the derivative value (FM-F0)/FM, called by different authors a “ma-ximum quantum efficiency” of PSII, are reviewed in this paper. A brief and comparative analysis of the Duysens hypothesis (Duysens and Sweers, 1963) and Klimov's hypothesis of recombination luminescence (Klimov et al., 1978) widely used to describe the processes in the PSII reaction center was carried out. Eventual errors due to inaccuracy in the applications of the parameter "maximum quantum efficiency" of PSII used to evaluate the photochemical activity of the photosynthetic appa-ratus and the physiological state of plants are discussed.

Keywords: Photosystem II, chlorophyll fluorescence, maximum quantum efficiency

References  

Ago H., Adachi H., Umena Y. et al. (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J. Biol. Chem., 291: 5676-5687. 

Baker N.R. (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59: 89-113. 

Barber J. (2006) Photosystem II: An enzyme of global significance. Biochem. Soc. Trans., 34: 619-631. 

Bjorkman O., Demmig B. (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverce origins. Planta, 170: 484-504. 

Borisov A.Yu., Godik V.I. (1973) Excitation energy transfer in photosynthesis. Biochim. Biophys. Acta, 301: 227-248. 

Bowes J.M., Crofts A.R. (1980) Binary oscillati-ons in the rate of reoxidation of the primary ac-ceptor of photosytem II. Biochim. Biophys. Acta, 590: 373-384. 

Brestic M, Zivcak M. (2013) PSII fluorescence Techniques for measurement of drought and high temperature stress signal in crop plants

Protocols and applications. In: G.R.Rout, A.B.Das (Eds.) Molecular Stress Physiology of Plants. Springer, Dordrecht, pp. 87-131 

Brettel K., Schlodder E., Witt H.T. (1984) Nanosecond reduction kinetics of photooxidized chlorophyll-aII (P-680) in single flashes as a probe for the electron pathway, H+-release and charge accululation in the O2-evolving complex. Biochim. Biophys. Acta, 766: 403-415. 

Briantais J.M., Vernotte C., Krause G.H., Weis E. (1986) Chlorophyll fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, J.Amesz and D.C.Fork (Eds.) Light emission by plant and bacteria. Academic Press, New York, p. 539-577. 

Campbell D., Hurpy V., Clarke A.K. et al. (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62: 667-683. 

Crofts A.R., Wraight C.A. (1983) The electroc-hemical domain of photosynthesis. Biochim. Bi-ophys. Acta, 726: 149-185. 

Danielius R.V., Satoh K., van Kan P.J.M., et al. (1987) The primary reaction of photosystem II in the D1-D2-cytochrome b-559 complex. FEBS Lett., 213: 241-244. 

De Wijn R., van Gorkom H.J. (2001) Kinetics of electron transfer from QA to QB in photosys-tem II. Biochemistry, 40: 11912-11922. 

Debus R.J. (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim. Biophys. Acta, 1102: 269-352. 

Duysens L.N.M., Sweers H.E. (1963) Mecha-nism of two photochemicals reaction in algae as studied by means of fluorescence. In: S.Miachi (ed.) Studies on microalgae and photosynthetic bacteria. Tokyo: Univ. Tokyo press, p. 353-372. 

Eckert H.-J., Wiece N., Bernarding J. et al. (1988) Analysis of the electron transfer from Pheo– to QA in PSII membrane fragments from spinach by time-resolved 325 nm absorption changes in the picosecond domain. FEBS Lett., 240: 153-158. 

Ferreira K.N., Iverson T.M., Maghlaoui K. et al. (2004) Architecture of the photosynthetic oxygen-evolving center. Science, 303: 1831-1838. 

Goltsev V.N., Kalaji H.M., Paunov M. et al. (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian J. Plant Phys. 63: 869-893. 

Govindjee, Shevela D., Björn L.O. (2017) Evo-lution of the Z-scheme of photosynthesis: a pers-pective. Photosynth. Res. 133: 5-15. 

Greenfield S.R., Seibert M., Govindjee, Wasielewski M.R. (1997) Direct measurement of the effective rate constant for primary charge separation in isolated photosystem II reaction centers. J. Phys. Chem. B, 101: 2251-2255. 

Groot M.L., van Grondelle R., Leegwater J.A., van Mourik F. (1997) Radical pair quantum yield in reaction centers of photosystem II of green plants and of the green bacterium Rhodobacter sphaeroides: Saturation behavior with subpicosecond pulses. J. Phys. Chem. (B), 101: 7869-7873. 

Haehnel W., Holzwarth A.R., Wendler J. (1983) Picosecond fluorescence kinetics and energy transfer in the antenna chlorophylls of green al-gae. Photochem. Photobiol., 37: 435-443. 

Haehnel W., Nairn J.A., Reisberg P., Sauer K. (1982) Picosecond fluorescence kinetics and energy transfer in chloroplasts and algae. Bioc-him. Biophys. Acta, 680: 161-173. 

Hansson O., Duranton J., Mathis P. (1998) Yield and lifetime of the primary radicals pairs in preparations of photosystem II with different antenna size. Biochim. Biophys. Acta, 932: 91-96. 

Hasting G., Durrant J.R., Barber J. et al. (1992) Observation of pheophytin reduction in photosystem II two reaction centers using femtosecond transient absorption spectroscopy. Biochemistry, 31: 7638-7647. 

Hill R. (1965) The biochemist’s green mansions: the photosynthetic electron-transport chain in plants. In: P.N.Campbell, G.D.Greville (Eds.) Essays in Biochemistry. London: Academic Press, 1: 121-151. 

Holzwarth A.R. (1986) Fluorescence lifetime in photosynthetic systems. Photochem. Photobiol., 43:707-735. 

Holzwarth A.R., Wendler J., Haehnel W. (1985) Time resolved fluorescence spectra of the antenna chlorophylls in Chlorella vulgaris. Resolution of photosystem I fluorescence. Bioc-him. Biophys. Acta, 807: 155-167. 

Horton P., Bowyer J.R. (1990) Chlorophyll fluorescence transients. Meth. Plant. Biochem. 4:259-296. 

Kalaji H.M., Jajoo A., Oukarroum A. et al. (2016) Chlorophyll fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta. Physiol. Plant. 38: 102-113. 

Kalaji H.M., Schansker G., Ladle R.J. et al. (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth. Res. 122: 121-158. 

Karukstis K.K., Sauer K. (1985) The effect of cation induced and pH-induced membrane stacking on chlorophyll fluorescence decay kinetics. Biochim. Biophys. Acta, 806: 374-388. 

Kitajima M., Butler W.L. (1975) Quenching of chlorophyll fluorescence and primary photo-che-mistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta, 376: 105-115. 

Klevanik A.V., Feyziev Y.M., Allakhverdiev S.I. et al. (1991) The origin of photosystem II variable chlorophyll fluorescence. Biologiches-kie Membrany, 10: 1053-1065. (Russian) 

Klimov V.V., Allakhverdiev S.I., Pashchenko V.Z. (1978) Measurement of the activation energy and the lifetime of the chlorophyll fluo-rescence of photosystem II. Dokl. Acad. Sci. USSR, 242: 1204-1208 (Russian) 

Klimov V.V., Allakhverdiev S.I., Shuvalov V.A., Krasnovsky A.A. (1982) Effect of extrac-tion and re-addition of manganese on light reac-tions of photosystem-II preparations. FEBS Lett., 148: 307-312. 

Klimov V.V., Klevanik A.V., Shuvalov V.A., Krasnovsky A.A. (1977) Reduction of phe-ophytin in the primary light reaction of pho-tosystem II. FEBS Lett., 82: 183-186. 

Klimov V.V., Krasnovskii A.A. (1981) Pheophy-tin as the primary electron acceptor in photosys-tem 2 reaction cnter. Photosynthetica, 15: 592-609. 

Krause G.H., Weis E. (1984) Chlorophyll fluo-rescence as a tool in plant physiology. II. Interp-retation of fluorescence signals. Photosynth. Res., 5: 139-157. 

Krause G.H., Weis E. (1991) Chlorophyll fluorescence and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42: 313-349. 

Kromkamp J.C., Forster R.M. (2003) The use of variable fluorescence measurements in aqua-tic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur. J. Physiol., 38: 103-112. 

Lazár D. (1999) Chlorophyll fluorescence induction. Biochim. Biophys. Acta, 1412: 1-28. 

Leibl W., Breton J., Deprez J., Trissl H.-W. (1989) Photoelectric study on the kinetics of trapping and charge stabilization in oriented PSII membranes. Photosynth. Res., 22: 257-275. 

Mauzerall D.C. (1985) Evidence that the variable fluorescence of Chlorella is recombination lumi-nescence. Biochim. Biophys. Acta, 809: 11-16. 

Maxwell K., Johnson G.N. (2000) Chlorophyll fluorescence – a practical guide. J. Exp. Bot., 51: 659-668. 

Meyer B., Schlodder E., Dekker J.P., Witt H.T. (1989) O2 evolution and Chl-aII (P-680+) nano-second reduction kinetics in single flashes as a function of pH. Biochim. Biophys. Acta, 1974: 36-43. 

Moya I., Hodges V., Barbet J.C. (1986) Modification of room temperature picosecond chlorophyll fluorescence kinetics in green alga by photosystem II trap closure. FEBS Lett., 1986: 256-262. 

Muh F., Zouni A. (2011) Light-induced water oxidation in photosystem II. Front. Biosci., 16: 3072-3132. 

Nairn J.A., Haehnel W., Reisberg P., Sauer K. (1982) Picosecond fluorescence kinetics in spi-nach chloroplasts at room temperature. Effects of Mg2+. Biochim. Biophys. Acta, 682: 420-429. 

Nelson N., Yocum C.F. (2006) Structure and function of photosystems I and II. Annu. Rev. Plant Biol., 57: 521-565. 

Nuijs A.M., van Gorkom H.J., Plijter J.J., Duy-sens L.N.M. (1986) Primary charge separation and excitation of chlorophyll in photosystem II particles from spinach as studied by picosecond absorbance difference spectroscopy. Biochim. Bi-ophys. Acta, 848: 167-175. 

Robinson H.-H., Crofts A.R. (1983) Kinetics of the oxidation-reduction reactions of the pho-tosystem II quinine acceptor complex and the pathway for deactivation. FEBS Lett., 153: 221-226. 

Schelvis J.P.M., van Noort P.L., Aartsma T.J., van Gorkom H.J. (1994) Energy transfer, charge separation and pigment arrangement in the reaction center of photosystem II. Biochim. Biophys. Acta, 1184: 242-250. 

Schlodder E., Brettel K., Schatz G.H., Witt H.T. (1984) Analysis of the Chl-aII+ reduction kinetics with nanosecond time resolution in oxygen-evolving photosystem II particles from Synechococcus at 680 and 824 nm. Biochim. Biophys. Acta, 765: 178-185. 

Schreiber U., Bilger W., Hormann H., Neubauer C. (1998) Chlorophyll fluorescence as a diagnostic toll: basics and some aspects of practical relevance. In: A.S.Raghavendra (Ed.) Photosynthesis: A comprehensive treatise. Cambridge Univ. Press, Cambridge, p. 320-336. 

Shuvalov V.A., Klimov V.V., Dolan E., et al. (1980) Nanosecond fluorescence and absorban-ce changes in photosystem II at low redox po-tential. Pheophytin as an intermediary electron acceptor. FEBS Lett., 118: 279-282. 

Umena Y., Kawamaki K., Shen J.R., Kamiya N. (2011) Crystal structure of oxygen evolving photosystem II at an atomic resolution of 1.9 Å. Nature, 473: 55-60. 

Visser H.M., Groot M.-L., van Mourik F. et al. (1995) Subpicosecond transient absorption difference spectroscopy on the reaction center of photosystem II: Radical pair formation at 77 K. J. Phys. Chem. A, 99: 15304-15309. 

Wasielewski M.R., Johnson D.G., Govindjee et al. (1989a) Determination of the primary charge sepapration rate in photosystem II reaction centers at 15 K. Photosynth. Res., 22: 89-99 

Wasielewski M.R., Johnson D.G., Seibert M., Govindjee (1989b) Determination of the pri-mary charge sepapation rate in isolated pho-tosystem II reaction centers with 500-fs resoluti-on. Proc. Natl. Acad. Sci. USA, 86: 524-528. 

Yamane Y., Kashino Y., Koike H., Satoh K. (1997) Increase in the fluorescence F0 level and reversible inhibition of hotosystem II reaction center by high-temperature treatments in higher plants. Photosynth. Res., 52: 57-64. 

Zouni A., Witt H.-T., Kern J. et al. (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature, 409: 739-743.



Добавить комментарий

Оставить комментарий

reload, if the code cannot be seen