Resolution and resolvability in one, two and three dimensions

 Research article: Resolution and resolvability in one, two and three dimensions

Authors: G.M. Gasimova1,2*, R.C. Masmaliyeva1**, G.N. Murshudov1,3***

1Institute of Molecular Biology & Biotechnologies, Azerbaijan National Academy of Sciences, Azerbaijan

2Azerbaijan State Oil and Industry University, 34 Azadliq ave., Baku AZ1010, Azerbaijan

3MRC Laboratory of Molecular Biology, Cambridge, UK

* For correspondence: GXG557@alumni.bham.ac.uk

** For correspondence: r.masmaliyeva@gmail.com

***For correspondence: garib@mrc-lmb.cam.ac.uk

Accepted for publication: 10 August 2019

Abstract: 

This contribution describes an approach to the problem of resolution and resolvability in scattering methods (e.g. X-ray diffraction, electron microscopy) in the presence of series termination and blurring. One-, two- and three-dimensional cases are considered separately. Formulas relating the effects of nominal resolution and blurring to peak resolvability are derived and analysed. We show that both blurring and series termination widen point source peaks thus reducing their resolvability.

Keywords: Refinement, electron cryo-microscopy, Fourier shell correlation, Fourier transformation, Gaussian distribution

References   

Berman H.M., Battistuz T., Bhat T.N. et al (2002) The Protein Data Bank. Acta Crystallogr., D58: 899-907. 

Rupp B. (2010) Biomolecular crystallography: principles, practice and applications to structural biology. Abingdon, New York: Garland Science, Taylor & Francis Group, Pp. 808. 

Emsley P., Cowtan K.D. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D, 60: 2126-2132. 

Harker D., Kasper J.S. (1948) Phases of fourier coefficients directly from crystal diffraction data, Acta Cryst., 1: 70. 

Frank, J (2005) Three-dimensional electron mic-roscopy of macromolecular assemblies: visuali-zation of biological molecules in their Native sta-te. New York, Oxford University Press. 

Murshudov G.N. (2016) Refinement of atomic models against cryoEM maps. Methods in Enzymology, 579: 277-305. 

Piessens R., de Doncker-Kapenga E., Uberhuber C., Kahaner D. (1983) Quadpack: a Subroutine Package for Automatic Integration. Springer Verlag. 

Poppe G.P.M., Wijers C.M.J. (1990) More effi-cient computation of the complex error function. ACM Transactions on Mathematical Software, 16: 38-46. 

Rosenthal P.B., Henderson R. (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol., 333: 721-745. 

Scheres S.H.W. (2012) RELION: Implementation of a Bayesian approach to cryo-EM structure de-termination. Journal of Structural Biology, 180(3): 519-530. 

R Core Team (2018) R: A Language and Environ-ment for Statistical Computing. R Foundation for Statistical Computing, Viena, Austria. 

Vega L.R., Rey H. (2012) A Rapid Introduction to Adaptive Filtering, 7 Springer Briefs in Electrical and Computer Engineering. 

Wlodawer A., Li M., Dauter Z. (2017) High-resolution cryo-EM maps and models: A crystallographer’s perspective. Structure, 25: 1587-1597.


Добавить комментарий

Оставить комментарий

reload, if the code cannot be seen