Angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism in Azerbaijan population
Research article: Angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism in Azerbaijan population
Authors: G.R. Alibayova, S.M. Rustamova, L.A. Akhundova, N.Sh. Mustafayev, I.M. Huseynova*
Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan
*For correspondence: imbb@science.az
Received 22 October 2020; Received in revised form 02 November 2020; Accepted 02 November 2020
Abstract:
Angiotensin-converting enzyme (ACE) is a key enzyme of the renin-angiotensin-aldosterone system (RAAS), which is directly involved in the regulation of blood pressure. It is assumed that the inser- tion/deletion (I/D) polymorphism of the gene of this enzyme (ACE gene) appears due to the pres- ence/absence of ~ 287 bp Alu repeats in the 16th intron and is associated with the risk of the develop- ment of some diseases, including cardiovascular diseases, various kinds of mental disorders, Alzhei- mer's disease, gestational diabetes, etc. Given the lack of data on ACE gene I/D polymorphism for the Azerbaijan population, we studied polymorphism of this gene by PCR, using sequence specific pairs of primers (Hace3s and Hace3as (I), ACE-F and ACE-R (II)). DNA samples isolated from 346 individuals were divided into 4 groups: (1) patients with various mental disorders (90 patients); (2) a group of young students involved in various sports (84 male persons); (3) patients with diabetes (28 patients with I type DM (3A subgroup) and 72 patients with II type DM (3B subgroup); (4) a group of conditionally healthy people of different ages and specialties (72 persons, control). Based on the results of PCR of both primer pairs, the following genotypes were obtained: 16 individuals with gen- otype II (4.6%, homozygous co-dominants for the I-allele), 101 individuals with genotype DD (29.2%, homozygous co-dominants for the D-allele) and 228 individuals with genotype ID (66.2%, heterozy- gotes for both alleles). The frequency of occurrence was: fI=0.373, fD=0.627, ND:NI=1.681. The ratio of separate genotypes within the studied population: ID:DD=2.173; ID:II=14.125; DD:II=6.500. Comparison of the values of the dominant model for the allele D - (DD+ID)/II=20.625 and the reces- sive model DD/(ID+II)=0.430 relative to the dominant model for the allele I - (II+ID)/DD=1.152 and the recessive model II/(ID+DD)=0.048 indicates that in both models the probability of the D allele to associate with any particular trait is higher than that of the I allele (17.904 and 8.958 times, respec- tively). These results confirm the literature data on the association of the D allele with many pathol- ogies or diseases. The analysis of the obtained data also revealed a significant correlation (p≤0.01) of the studied features from the D allele both within groups and between groups.
Keywords: Renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme (ACE), inser- tion, deletion, hypertension, psychiatric disorders, diabetes mellitus (DM), polymorphism, co-dominant, homozygote, heterozygote, COVID-19
References
Abbasi Z., Assady S., Khoury E.E., Heyman S.N. (2020) Letter to the editor: Angiotensin-con-verting enzyme 2: an ally or a Trojan horse? Im-plications to SARS-CoV-2-related cardio-vascu-lar complications. Am. J. Physiol. Heart Circ. Physiol., 318(5): H1080-H1083. doi: 10.1152/aj-pheart.00215.2020.
Arfa I., Abid A., Nouira S., Elloumi-Zghal H., Malouche D., Mannai I., Zorgati M.M., Ben Alaya N., Rebai A., Zouari B., Ben Ammar S., Ben Rayana M.C., Hmida S., Blousa-Chab-choub S., Abdelhak S. (2008) Lack of associa-tion between the angiotensin-converting enzyme gene (I/D) polymorphism and diabetic nephropa-thy in Tunisian type 2 diabetic patients. J. Renin Angiotensin Aldosterone Syst., 9(1): 32-6. doi: 10.3317/jraas.2008.002.
Bosso M., Thanaraj T.A., Abu-Farha M., Alan-baei M., Abubaker J., Al-Mulla F. (2020) The two faces of ACE2: The role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Mol. Ther. Methods Clin. Dev., 18:321-327. doi: 10.1016/j.omtm.2020.06.017.
Brojakowska A., Narula J., Shimony R., Bander J. (2020) Clinical Implications of SARS-Cov2 interaction with renin angiotensin system. J. Am. Coll. Cardiol., 75(24): 3085-3095. doi: 10.1016/j.jacc.2020.04.028.
Cassis P., Locatelli M., Corna D., Villa S., Rot-toli D., Cerullo D., Abbate M., Remuzzi G., Be-nigni A., Zoja C. (2019) Addition of cyclic an-giotensin-(1-7) to angiotensin-converting en-zyme inhibitor therapy has a positive add-on ef-fect in experimental diabetic nephropathy. Kid-ney International, 96(4): 906-917. doi :10.1016/ j.kint.2019.04.024
Castellano M., Muiesan M.L., Rizzoni D., Bes-chi M., Pasini G., Cinelli A., Salvetti M.Porteri E., Bettoni G., Kreutz R., Lindpaintner K., Rosei E.A. (1995) Angiotensin converting en-zyme I/D polymorphism and arterial wall thick-ness in a general population. The Vobarno Study. Circulation, 91(11): 2721–2724. doi: 10.1161/01.cir.91.11.2721.
Cure E., Cumhur Cure M. (2020) Angiotensin-converting enzyme inhibitors and angiotensin re-ceptor blockers may be harmful in patients with diabetes during COVID-19 pandemic. Diabetes Metab. Syndr., 14(4): 349-350. doi: 10.1016/j.dsx.2020.04.019.
Dal Mas C., Carvalho M.S., Marins L.A., Yo-namine C.M., Cordeiro Q., McIntyre R.S., Mansur R.B., Brietzke E., Hayashi M.A. (2019) Oligopeptidases activity in bipolar disor-der: Ndel1 and angiotensin I converting enzyme. Journal of Affective Disorders, 244: 67-70. doi10.1016/j.jad.2018.10.001
Das S., Anu K.R., Birangal S.R., Nikam A.N., Pandey A., Mutalik S., Joseph A. (2020) Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review. Life Sci., 258: article ID 118202. doi: 10.1016/j.lfs.2020.118202.
De Mello W.C. (2017) Local renin angiotensin al-dosterone systems and cardiovascular diseases. Medical Clinics, 101(1): 117-127. doi: 10.1016/j.mcna.2016.08.017.
Devaux C.A., Rolain J.M., Raoult D. (2020) ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J. Microbiol. Immunol. Infect., 53(3): 425-435. doi: 10.1016/j.jmii.2020.04.015.
Doshi D.D., Shah D.B., Singh K.M., Patel R.K. (2015). Comparative study of I/D polymorphism of ace gene in diabetes type-2 patients and control group in unrelated Gujarati population. Genetika, 47(3): 1013-1019. doi: 10.2298/GENSR1503013D
Eroglu Z., Cetinkalp S., Erdogan M., Kosova B., Karadeniz M., Kutukculer A., Gunduz C., Tetik A., Topcuoglu N., Ozgen A.G., Tuzun M. (2008) Association of the angiotensinogen M235T and angiotensin-converting enzyme in-sertion/deletion gene polymorphisms in Turkish type 2 diabetic patients with and without nephropathy. J. Diabetes Complications, 22(3): 186-190. Doi: 10.1016/j.jdiacomp.2006.12.004.
Forrester S.J., George W.B., Curt D.S., Thomas M.C., Tatsuo K., Victor R., Rosario S., Satoru E. (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and patho-physiology. Physiol. Rev., 98(3): 1627-1738. https://doi.org/10.1152/physrev.00038.2017
Gadelha A., Yonamine C.M., Ota V.K., Oliveira V., Sato J.R., Belangero S.I., Bressan S.I. & Hayashi M.A. (2015) ACE I/D genotype-related
increase in ACE plasma activity is a better predic-tor for schizophrenia diagnosis than the genotype alone. Schizophrenia Research, 164(1-3): 109-114. doi: 10.1016/j.schres.2015.01.044
Gatt J.M., Burton K.L., Williams L.M., Schofield P.R. (2015) Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. Journal of Psy-chiatric Research, 60: 1-13. doi: 10.1016/j.jpsychires.2014.09.014.
Goessler K., Polito M., Cornelissen V.A. (2016) Effect of exercise training on the renin-angioten-sin-aldosterone system in healthy individuals: a systematic review and meta-analysis. Hyperten-sion Research, 39(3): 119-126. doı: 10.1038/hr.2015.100
Guo W., Li M, Dong Y., Zhou H., Zhang Z., Tian Ch., Qin R., Wang H., Shen Y., Du K., Zhao L., Fan H., Luo Sh., Hu D. (2020) Diabe-tes is a risk factor for the progression and prog-nosis of COVID-19. Diabetes Metab. Res. Rev., e3319: 1-9. doi: 10.1002/dmrr.3319.
Hadi I., Rosyanti L. (2019) Genetic variation of I/D enzyme converting angiotensin (ACE) with athlete muscle resistance. Health Notions, 3(3): 143-148.doi: https://doi.org/10.33846/hn30306
Hussain A., Bhowmik B., do Vale Moreira N.C. (2020) COVID-19 and diabetes: Knowledge in progress. Diabetes Res. Clin. Pract., 162: 108142. doi: 10.1016/j.diabres.2020.108142.
Khakoo A.Y., Sidman R.L., Pasqualini R., Arap W. (2008) Does the renin-angiotensin system participate in regulation of human vasculogenesis and angiogenesis? Cancer Research, 68(22): 9112-9115. doi: 10.1158/0008-5472.CAN-08-0851.
Li Q., Cao Z., Rahman P. (2020) Genetic varia-bility of human angiotensin-converting enzyme 2 (hACE2) among various ethnic populations. Mol. Genet. Genomic. Med., 8: e1344, 1-6 (6 p.). doi: 10.1002/mgg3.1344.
Lippi G., Lavie C.J., Henry B.M., Sanchis-Gomar F. (2020) Do genetic polymorphisms in angiotensin converting enzyme 2 (ACE2) gene play a role in coronavirus disease 2019 (COVID-19)? Clin. Chem. Lab. Med., 58(9): 1415-1422. doi: 10.1515/cclm-2020-0727.
Lynch K.R., O’Connell D.P. (2018) Molecular, biochemical, and functional biology of angioten-sinogen. In: Cellular and Molecular Biology of the Renin-Angiotensin System. CRC Press, pp. 131-148.
Malikova E., Galkova K., Vavrinec P., Vavrin-cova-Yaghi D., Kmecova Z., Krenek P., Klimas J. (2016) Local and systemic renin–angiotensin system participates in cardio-pulmonary–renal in-teractions in monocrotaline-induced pulmonary hypertension in the rat. Molecular and Cellular Bi-ochemistry, 418(1-2): 147-157. doi: 10.1007/s11010-016-2740-z
Mengesha H.G., Petrucka P., Spence C., Tafesse T.B. (2019) Effects of angiotensin converting en-zyme gene polymorphism on hypertension in Af-rica: A meta-analysis and systematic review. PloS One, 14(2): e0211054. doı: 10.1371/jour-nal.pone.0211054
Mirfeizi M., Hasanzad M., Sattari M., Afshari M., Abbasi D., Ajoodani Z., Sheykheslam A.B. (2018) Association of eNOS and ACE gene poly-morphisms as a genetic risk factor in gestational diabetes in Iranian women. J. Diabetes Metab Disord., 17(2): 123-127. doi: 10.1007/s40200-018-0348-4.
Moran C.N., Vassilopoulos C., Tsiokanos A., Jamurtas A.Z., Bailey M.E., Montgomery H. E., Wilson R.H., Pitsiladis Y.P. (2006) The as-sociations of ACE polymorphisms with physical, physiological and skill parameters in adolescents. European Journal of Human Genetics, 14(3): 332-339. doı: 10.1038/sj.ejhg.5201550
Ohkuma T., Jun M., Rodgers A., Cooper M.E., Glasziou P., Hamet P., Harrap S., Mancia G., Marre M., Neal B., Perkovic V., Poulter N., Williams B., Zoungas S., Chalmers J., Wood-ward M. (2019) Acute ıncreases in serum creati-nine after starting angiotensin-converting en-zyme ınhibitor-based therapy and effects of its continuation on major clinical outcomes in type 2 diabetes mellitus: The advance trial. Hyperten-sion, 73(1): 84-91. doi: 10.1161/HYPERTEN-SIONAHA.118.12060.
Othman H., Bouslama Z., Brandenburg J.-T., da Rocha J., Hamdi Y., Ghedira K., Srairi-Abid N., Hazelhurst S. (2020) Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem. and Biophys. Res. Commun., 527(3): 702-708 doi: 10.1016/j.bbrc.2020.05.028
Ozturk R., Tashova Y., Ayaz A. (2020) COVID-19: pathogenesis, genetic polymorphism, clinical features and laboratory findings. Turk. J. Med. Sci., 50(SI-1): 638-657. doi: 10.3906/sag-2005-287. PMID: 32512673.
Pan Y.H., Wang M., Huang Y.M., Wang Y.H., Chen Y.L., Geng L.J., Zhang X.X., Zhao H.L. (2016) ACE gene I/D polymorphism and obesity in 1,574 patients with type 2 diabetes mellitus. Dis Markers, 2016: Article ID 7420540, 6 p.; doi: 10.1155/2016/7420540.
Phillips M.I., Speakman E.A., Kimura B. (2018) Tissue renin-angiotensin systems. In: Cel-lular and Molecular Biology of the renin-angio-tensin system, CRC Press, pp. 97-130.
Pirozzi F.F., Belini Junior E., Okumura J.V., Salvarani M., Bonini-Domingos C.R., Ruiz M.A. (2018) The relationship between of ACE I/D and the MTHFR C677T polymorphisms in the pathophysiology of type 2 diabetes mellitus in a population of Brazilian obese patients. Arch. Endocrinol. Metab., 62(1): 21-26. doi: 10.20945/2359-3997000000005.
Purnamasari D., Widjojo B.D., Antono D., Syampurnawati M. (2012) ACE gene polymor-phism and atherosclerotic lesion of carotid artery among offsprings of type 2 diabetes mellitus. Acta Med. Indones., 44(2): 128-34. PMID: 22745143.
Rigat B., Hubert C., Corvol P., Soubrier F. (1992) PCR detection of the insertion/deletion polymorphism of the human angiotensin convert-ing enzyme gene (DCP1) (dipeptidyl carboxy-peptidase 1). Nucleic Acids Research, 20(6): 1433. doı: 10.1093/nar/20.6.1433-a
Santoro G.F., Mello K.D.D., Oliveira Netto Z.C.D., Pfutzenreuter G., Bassan J.C., Sal-gueirosa F.D.M. (2019). The ınfluence of ACE I/D gene polymorphısm ın amateur Amerıcan football athletes ın Brazıl. Revista Brasileira de Medicina do Esporte, 25(6): 460-463. doi: 10.1590/1517-869220192506198909
Shanmugam V., Sell K.W., Saha B.K. (1993) Mistyping ACE heterozygotes. PCR Methods, 3(2): 120–121.doi: 10.1101/gr.3.2.120.
Shen W., Jiang X.X., Li Y.W., He Q. (2019) I/D polymorphism of ACE and risk of diabetes-re-lated end-stage renal disease: a systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci., 23(4): 1652-1660. doi: 10.26355/eurrev_201902_17126.
Song G.G., Lee Y.H. (2015) The insertion/ deletion polymorphism in the angiotensin-converting en-zyme and susceptibility to schizophrenia or Par-kinson’s disease: A meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 16(2): 434-442. doi: 10.1177/1470320313495909
South A.M., Diz D.I., Chappell M.C. (2020) COVID-19, ACE2, and the cardiovascular conse-quences. Am. J. Physiol Heart Circ Phys-iol., 318(5): H1084-H1090. doi: 10.1152/aj-pheart.00217.2020.
Turgut G., Turgut S., Genc O., Atalay A., Ata-lay E.O. (2004) The angiotensin converting en-zyme I/D polymorphism in Turkish athletes and sedentary controls. Acta Medıca-Hradec Kralove, 47(2): 133-136. PMID: 15446365
Van-Valkengoed I.G.M., Stronkd K., Hahntow I.N., Hkoekstra J.B.L., Holleman F. (2008) The angiotensin converting enzyme insertion/deletion Polymorphism and differences in fasting plasma glucose in Hindustani Surinamese, African Suri-namese and ethnic Dutch: the population-based SUNSET-study. Diabetes Res. Clin. Pract., 81: 12-14. doı: 10.1016/j.diabres.2008.03.010
Yamamoto N., Ariumi Y., Nishida N., Yama-moto R., Bauer G., Gojobori T., Simotohno K., Mizokami M. (2020) SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene, 758: Article ID 144944. doi: 10.1016/j.gene.2020.144944.
Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. (2020) Angiotensin-converting en-zyme 2 (ACE2) as a SARS-CoV-2 receptor: mo-lecular mechanisms and potential therapeutic tar-get. Intensive Care Med., 46(4): 586-590. doi: 10.1007/s00134-020-05985-9.
Zhang X., Wu L., Chai M., Huang X., Zhu J., Li S., Zhang J., Zhang H. (2019) Angiotensin-con-verting enzyme insertion/deletion polymorphism and susceptibility to Henoch–Schönlein purpura: a meta-analysis. Journal of the Renin-Angioten-sin-Aldosterone System, 20(1): Article ID 1470320319836302. doi:10.1177/1470320319836302.