Study of genomic variation in bread wheat collection based on next generation sequencing data

Research article: Study of genomic variation in bread wheat collection based on next generation sequencing data

Authors: Z.İ. Akparov, M.A. Abbasov*

Genetic Resources Institute, Azerbaijan National Academy of Sciences, 155 Azadlig ave., Baku AZ 1106, Azerbaijan; *For correspondence:mehraj_genetic@yahoo.com

Accepted for publication: 18 September 2019

Abstract: 

Genotyping by Sequencing (GBS) is a Next Generation Sequencing (NGS) technique widely applied in plant breeding that uses restriction enzymes to reduce the complexity of the genome. In the cur-rent study the genomic diversity of 87 local and introduced bread wheat genotypes was evaluated using GBS technology. A total of 411 single-nucleotide polymorphisms (SNPs) were obtained for three genomes. The SNP range within each genome was 15–29, 10–36 and 3–17 for A, B and D ge-nome, respectively. The highest number of SNP markers was recorded on the B (48.8%) and the lo-west on the D genome (14%). In total, 70.2% of SNPs were transitions (Ts) and 29.8% transversi-ons (Tv). The largest Delta K value was recorded at K = 2, indicating the existence of 2 groups in the collection. The I group contained 68.5% of the introduced accessions, whereas 82% of local ge-notypes fell into the II group. The average ancestral contribution of the genotypes in I and II gro-ups were 86.4% and 83.6%, respectively. The results of cluster and PCoA analyses were consistent with the STRUCTURE, indicating a sharp differentiation between local and introduced germplasm. Other factors determining the grouping of samples were traits of botanical varieties and genealogy. The SNP markers, revealed in the current study will be used as a genetic source for genotyping and marker-trait association analyzes. The data can be successfully applied in the development and implementation of new strategies for subsequent genetic analysis and breeding.

Keywords: Bread wheat, genome, genotyping by sequencing, SNP, transition, transversion 

References  

Akhunov E.D., Akhunova A.R., Anderson O.D., Anderson J.A., Blake N., Clegg M.T., et al. (2010) Nucleotide diversity maps reveal varia-tion in diversity among wheat genomes and chromosomes. BMC Genomics, 11: 702. doi: 10.1186/1471-2164-11-702. 

Abbasov M., Akparov Z., Gross T., Babayeva S., Izzatullayeva V., Hajiyev E., Rustamov K., Gross P., Tekin M., Akar T., Chao S. (2018) Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers. Genetic resources and crop evolution, 65(5):1441-1453. 

Singh N., Wu S., Tiwari V.K., Sehgal S.K., Raupp J., Wilson D., Abbasov M., Gill B.S., Poland J. (2019) Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii. Frontiers in plant science, 10: 9. 

Alipour H., Bihamta M.R., Mohammadi V., Peyghambari S.A., Bai G., Zhang G. (2017) Genotyping-by-sequencing (GBS) revealed mo-lecular genetic diversity of Iranian wheat landra-ces and cultivars. Frontiers in plant science, 8: 1293. 

Allen A.M., Barker G.L., Berry S.T., Coghill J.A., Gwilliam R., Kirby S., Robinson P., Brenchley R.C., D’Amore R., McKenzie N., Waite D. (2011) Transcript-specific, single-nuc-leotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant biotechnology journal, 9(9): 1086-1099. 

Barlow K.K., Driscoll C.J. (1981) Linkage studies involving two chromosomal male-sterility mutants in hexaploid wheat. Genetics, 98(4): 791-799. 

Brenchley R., Spannagl M., Pfeifer M., Barker G.L., D’Amore R., Allen A.M., McKenzie N., Kramer M., Kerhornou A., Bolser D., Kay S. (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491(7426): 705. 

Buckler E.S., Holtsford T.P. (1996) Zea riboso-mal repeat evolution and substitution patterns. Molecular Biology and Evolution, 13(4): 623-632. 

Cavanagh C.R., Chao S., Wang S., Huang B.E., Stephen S., Kiani S., Forrest K., Saintenac C., Brown-Guedira G.L., Akhunova A., See D. (2013) Genome-wide comparative diversity un-covers multiple targets of selection for improve-ment in hexaploid wheat landraces and culti-vars. Proceedings of the national academy of sciences, 110(20): 8057-8062. 

Charmet G. (2011) Wheat domestication: lessons for the future. Comptes rendus biologies, 334(3): 212-220. 

Doyle J.J., Doyle J.L. (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull., 19: 11–15. 

Dvorak J., Akhunov E.D., Akhunov A.R., Deal K.R., Luo M.C. (2006) Molecular characteriza-tion of a diagnostic DNA marker for domestica-ted tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Molecular biology and evolution, 23(7): 1386-1396. 

Dvořák J., McGuire P.E. (1981) Nonstructural chromosome differentiation among wheat culti-vars, with special reference to differentiation of chromosomes in related species. Genetics, 97(2): 391-414. 

Edae E.A., Bowden R.L., Poland J. (2015) App-lication of population sequencing (POPSEQ) for ordering and imputing genotyping-by-sequen-cing markers in hexaploid wheat. G3: Genes, Genomes, Genetics, 5(12): 2547-2553. 

Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one, 6(5): p.e19379. 

Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R. (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496 (7443): 91. 

Liu K., Muse S.V. (2005) PowerMarker: Integra-ted analysis enviornment for genetic marker data. Bioinformatics, 21: 2128–2129. 

Marcussen T., Sandve S.R., Heier L., Spannagl M., Pfeifer M. (2014) International Wheat Ge-nome Sequencing Consortium Ancient hybridi-zations among the ancestral genomes of bread wheat. Science, 345: 1250092. doi: 10.1126/sci-ence.1250092. 

Narum S.R., Buerkle C.A., Davey J.W., Miller M.R., Hohenlohe P.A. (2013) Genotyping-by-sequencing in ecological and conservation geno-mics. Molecular ecology, 22(11): 2841-2847. 

Perrier X., Jacquemoud-Collet J.P. (2006) DARwin software: Dissimilarity analysis and representation for windows. Website http://dar-win. cirad. fr/darwin

Poland J.A., Rife T.W. (2012) Genotyping-by-sequencing for plant breeding and gene-tics. Plant Genome, 5: 92–102. doi: 10.3835/plantgenome2012.05.0005. 

Shavrukov Y., Suchecki R., Eliby S., Abugalie-va A., Kenebayev S., Langridge P. (2014) Application of next-generation sequencing tech-nology to study genetic diversity and identify unique SNP markers in bread wheat from Ka-zakhstan. BMC plant biology, 14(1): 258. 

Tadesse W., Amri A., Ogbonnaya F.C., Sanc-hez-Garcia M., Sohail Q., Baum M. (2016) Wheat. Academic Press. In: Genetic and Geno-mic Resources for Grain Cereals Improvement, 81-124


Добавить комментарий

Оставить комментарий

reload, if the code cannot be seen