The effect of salt (NaCl) stress on the ultrastructure of mesophyll and bundle sheath cell chloroplasts and the activity of superoxide dismutase in maize plants (Zea mays L.)

Research article: The effect of salt (NaCl) stress on the ultrastructure of mesophyll and bundle sheath cell chloroplasts and the activity of superoxide dismutase in maize plants (Zea mays L.)

Authors: N.Kh. Aliyeva1*, E.E.Gafarova1, D.R. Aliyeva1, S.Y. Suleymanov1, F.H. Rzayev2, E.K.Gasimov3

1Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku AZ 1073, Azerbaijan

2Laboratory of Electron Microscopy, SRC of Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan

3Department of Histology, Embryology and Cytology, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan

*For correspondence: enahide@rambler.ru

Accepted for publication: 25 November 2019

Abstract: The activity and isoenzyme content of superoxide dismutase (SOD) and changes in the leaf ultrast-ructure have been studied comparatively in chloroplasts of mesophyll and bundle sheath cells isola-ted from maize plants (Zea mays L.) grown in an artificial climate chamber at various concentrati-ons of NaCl (0 mM, 50 mM, 100 mM, 200 mM). The SOD activity was found to increase in plants exposed to 50 mM and 100 mM NaCl, but at 200 mM NaCl it was partly inhibited. The study of the isoenzyme activity of SOD revealed Fe-SOD isoform, which intensity increased with enhancing salt concentrations. The analysis of the ultrastructures of mesophyll (M) and bundle sheath (BS) cell chloroplasts by electron microscopy showed that chloroplasts of M cells were sensitive,whereas chloroplasts of BS cells were tolerant to stress. At the high salt concentration (200 mM), a partial transition of the agranal structure of BS cell chloroplasts to the granal structure occurred.

Keywords: Zea mays L., salt stress, superoxide dismutase, mesophyll, bundle sheath, chloroplast, ultrastructure

References   

Alscher R.G., Erturk N., Heath L.S. (2002) Ro-le of superoxide dismutases (SODs) in control-ling oxidative stress in plants. Journal of Experi-mental Botany, 53(372): 1331-1341. 

Asada K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2): 391-396. 

D'Amico F. (2005) A polychromatic staining method for epoxy embedded tissue: a new com-bination of methylene blue and basic fuchsine for light microscopy. Biotechnic and Histoche-mistry, 80 (5-6): 207-210. 

Gadjev I., Vanderauwera S., Gechev T.S., La-loi C., Minkov I.N., Shulaev V., van Breuse-gem F. (2006) Transcriptomic footprints disclo-se specificity of reactive oxygen species signa-ling in Arabidopsis. Plant Physiology, 141(2): 436-445. 

Ghasemi F., Heidari R., Jameii R., Purakbar L. (2013) Responses of growth and antioxidati-ve enzymes to various concentrations of nickel in Zea mays leaves and roots. Rom. J. Biol. Plant Biol., 58: 37-49. 

Gill S.S., Tuteja N. (2010) Reactive oxygen spe-cies and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909-930. 

Guliev N., Babaev G.G., Bairamov Sh.M. et al. (2003) Purification, properties and localization of two carbonic anhydrase from Amaranhus cru-entus leaves. Russian Journal of Plant Physio-logy, 50(2): 213-219. 

Hasan R., Kawasaki M., Taniguchi M., Miyake H. (2006) Salinity stress induces granal develop-ment in bundle sheath chloroplasts of maize, an NADP-malic enzyme-type C4 plant. Plant Pro-duction Science, 9(3): 256-265. 

Hasan R., Ohnuki Y., Kawasaki M., Taniguchi M., Miyake H. (2005) Differential sensitivity of chloroplasts in mesophyll and bundle sheath cells in maize, an NADP-malic enzyme-type C4 plant, to salinity stress. Plant Production Scien-ce, 8(5): 567-577. 

Jalali-e-Emam S.M.S., Alizadeh B., Zaefizadeh M., Zakarya R.A., Khayatnezhad M. (2011) Superoxide dismutase (SOD) activity in NaCl stress in salt-sensitive and salt-tolerance genoty-pes of Colza (Brassica napus L.). Middle East J. Sci. Res., 7: 7-11. 

Kumar M., Kumar A., Dandapat S., Sinha M.P. (2013) Phytochemical screening and antio-xidant potency of Adhatoda vasica and Vitex ne-gundo. The Bioscan, 8(2): 727-730. 

Kuo J. (Ed.). (2007) Electron microscopy: met-hods and protocols. Springer Science and Busi-ness Media, Vol. 369. 

Mahanty S., Kaul T., Pandey P., Reddy R.A., Mallikarjuna G., Reddy C.S., Reddy M. K. (2012) Biochemical and molecular analyses of copper–zinc superoxide dismutase from a C4 plant Pennisetum glaucum reveals an adaptive role in response to oxidative stress. Gene, 505(2): 309-317. 

Menezes-Benavente L., Kernodle S.P., Margis-Pinheiro M., Scandalios J.G. (2004) Salt-indu-ced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Report, 9(1): 29-36. 

Menezes-Benavente L., Kernodle S.P., Margis-Pinheiro M., Scandalios J.G. (2004) Salt-indu-ced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Report, 9(1): 29-36. 

Omoto E., Nagao H., Taniguchi M., Miyake H. (2013) Localization of reactive oxygen species and change of antioxidant capacities in me-sophyll and bundle sheath chloroplasts of maize under salinity. Physiologia Plantarum, 149(1): 1-12. 

Raines C.A. (2003) The Calvin cycle revisited. Photosynthesis research, 75(1): 1-10. 

Ramegowda V., Senthil-Kumar M. (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic unders-tanding from drought and pathogen combinati-on. Journal of Plant Physiology, 176: 47-54. 

Shao R., Xin L., Mao J., Li L., Kang, G., Yang Q. (2015) Physiological, ultrastructural and pro-teomic responses in the leaf of maize seedlings to polyethylene glycol-stimulated severe water deficiency. International Journal of Molecular Sciences, 16(9): 21606-21625. 

Von Caemmerer S., Furbank R.T. (2003) The C4 pathway: an efficient CO2 pump. Photosynt-hesis Research, 77(2-3): 191-207.


Добавить комментарий

Оставить комментарий

reload, if the code cannot be seen